

AFRL-RY-WP-TR-2008-1249

EXPLORATION OF A RESEARCH ROADMAP FOR
APPLICATION DEVELOPMENT AND EXECUTION ON
FIELD-PROGRAMMABLE GATE ARRAY (FPGA)-BASED
SYSTEMS

Dr. Tarek El-Ghazawi, Dr. Alan D. George, Dr. Ivan Gonzalez, Dr. Herman Lam,
Dr. Saumil Merchant, Dr. Proshanta Saha, Dr. Melissa Smith, Dr. Greg Stitt, Nahid Alam,
Esam El-Araby, Brian Holland, and Casey Reardon

The George Washington University

OCTOBER 2008
Final Report

Approved for public release; distribution unlimited.

See additional restrictions described on inside pages

STINFO COPY

AIR FORCE RESEARCH LABORATORY
SENSORS DIRECTORATE

WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320
AIR FORCE MATERIEL COMMAND

UNITED STATES AIR FORCE

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or permission to
manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by Defense Advanced Research Projects Agency
(DARPA) and is available to the general public, including foreign nationals. Copies may be
obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RY-WP-TR-2008-1249 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

*//Signature// //Signature//

KERRY L. HILL, Project Engineer BRADLEY J. PAUL, Chief
Advanced Sensor Components Branch Advanced Sensor Components Branch
Aerospace Components Division Aerospace Components Division

*//Signature//

TODD A. KASTLE, Chief
Aerospace Components Division
Sensors Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

*Disseminated copies will show “//signature//” stamped or typed above the signature blocks.

 i

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a
collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

October 2008 Final 09 January 2007 – 15 June 2008
4. TITLE AND SUBTITLE

EXPLORATION OF A RESEARCH ROADMAP FOR APPLICATION
DEVELOPMENT AND EXECUTION ON FIELD-PROGRAMMABLE GATE
ARRAY (FPGA)-BASED SYSTEMS

5a. CONTRACT NUMBER

FA8650-07-1-7742
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

62303E
6. AUTHOR(S)

Dr. Tarek El-Ghazawi, Dr. Ivan Gonzalez, Dr. Proshanta Saha, and Esam El-Araby
(The George Washington University)
Dr. Alan George, Dr. Herman Lam, Dr. Saumil Merchant, Dr. Greg Stitt, Brian
Holland, and Casey Reardon (University of Florida)
Dr. Melissa Smith and Nahid Alam (Clemson University)

5d. PROJECT NUMBER

ARPS
5e. TASK NUMBER

ND
5f. WORK UNIT NUMBER

 ARPSNDBU
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

 REPORT NUMBER

The George Washington University
Washington, DC 20052

University of Florida

Clemson University

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
 AGENCY ACRONYM(S)

Air Force Research Laboratory
Sensors Directorate
Wright-Patterson Air Force Base, OH 45433-7320
Air Force Materiel Command, United States Air Force

DARPA/IPTO
3701 Fairfax Drive
Arlington, VA 22203-1714

AFRL/RYDI
11. SPONSORING/MONITORING
 AGENCY REPORT NUMBER(S)

 AFRL-RY-WP-TR-2008-1249

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

PAO case number DARPA 12338; Clearance Date: 4 Feb 2009. Report contains color.

14. ABSTRACT

FPGA-based reconfigurable computing (RC) technology has been widely used by the DoD community to exploit
performance, power, area, cost, and versatility. Significant challenges, however, remain in application development tools
and design methodologies. This study focuses on investigating key challenges and limitations of FPGA tools, and
identifying and assessing potential solutions and research areas. The investigation included three major tasks: a) survey
of use cases and the state of existing tools; b) characterization of limitations of existing flows, analysis of key technical
challenges, and identification of potential solutions; and c) qualitative and quantitative analysis and evaluation of the
solution space and projected impact. Based on the study, new concepts and methodologies based upon four phases of
application development−formulation, design, translation, and execution (FDTE)−are expressed into 12 strategic
research thrusts. The impact of the proposed solutions was shown to potentially revolutionize FPGA design productivity
and execution efficiency.

15. SUBJECT TERMS

 FPGA, reconfigurable computing (RC), design productivity, CAD tools, design flow

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER
OF PAGES

 50

19a. NAME OF RESPONSIBLE PERSON (Monitor)

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

 Kerry L. Hill
19b. TELEPHONE NUMBER (Include Area Code)

(937) 255-4557 x3604

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

iii

TABLE OF CONTENTS

List of Figures iv

List of Tables v

Section 1: E X E C U T I V E S U M M A R Y 1

Section 2: E X I S T I N G L I M I T A T I O N S A N D R O O T C A U S E S 1
 2.1 Formulation Challenges and Limitations . 3
 2.2 Design Challenges and Limitations . 3
 2.3 Translation Challenges and Limitations . 3
 2.4 Execution Challenges and Limitations . 4
 2.5 Causes of the FPGA Productivity Problem 4

Section 3: P R O P O S E D S O L U T I O N S 4

 3.1 Formulation: Research Thrusts and Qualitative Impacts 6
 3.2 Design: Research Thrusts and Qualitative Impacts . 1 2
 3.3 Translation: Research Thrusts and Qualitative Impacts 1 5
 3.4 Execution: Research Thrusts and Qualitative Impacts 1 7

Section 4: Q U A N T I T A T I V E P R O D U C T I V I T Y A N A L Y S I S W I T H E X I S T I N G

T O O L S
2 0

Section 5: Q U A N T I T A T I V E P R O D U C T I V I T Y A N A L Y S I S W I T H F U T U R E F D T E

I N N O V A T I O N S
2 6

 5.1 Impact of Formulation Innovations . 2 6
 5.2 Impact of Design Innovations . 2 8
 5.3 Impact of Translation Innovations . 2 8
 5.4 Impact of Execution Innovations . 3 0
 5.5 Impact Summary Based upon Cost, Holding Utility Constant 3 1
 5.6 Projected Impact based upon Utility, Holding Cost Constant 3 2

Section 6: S I R C A : A P R O P O S E D N E W R E S E A R C H P R O G R A M 3 3

Section 7: I N T E G R A T E D R E S E A R C H V I S I O N 3 4

Section 8: S U M M A R Y A N D C O N C L U S I O N S 3 6

Section 9: R E F E R E N C E S 3 7

iv

LIST OF FIGURES

Figure 1: Application development phases . 2
Figure 2: Tool taxonomy . 2
Figure 3: Use case taxonomy . 3
Figure 4: FPGA application development space . 3
Figure 5: Technological evolution of FPGAs . 4
Figure 6: Evolving landscape of future computing devices . 5
Figure 7: Pattern-based algorithm exploration . 7
Figure 8: Example of PDF estimation modeling using RCML . 7
Figure 9: Function/architecture mapping in platform-based design process 8
Figure 10: Flowcharts for high-level prediction methods . 9
Figure 11: Overview of MiniBit bit-width optimization technique . 10
Figure 12: Pattern-based exploration used for bridging Formulation models to Design 10
Figure 13: Time multiplexing pattern example . 11
Figure 14: Formulation methodology . 11
Figure 15: Impact of Formulation innovation on overall productivity . 12
Figure 16: Major alternatives and roles for system-level parallel languages in Design phase 13
Figure 17: ReCos co-scheduling algorithm . 14
Figure 18: Portable framework interface (PFIF) . 15
Figure 19: Example VPR technique for improving Translation algorithms . 16
Figure 20: Routing oriented FPGA fabric for just-in-time compilation . 17
Figure 21: Possible stages for design instrumentation . 18
Figure 22: Stages of performance analysis . 19
Figure 23: Source-level additions made by instrumentation . 19
Figure 24: ReconOS System architecture . 20
Figure 25: DM Middleware Architecture . 20
Figure 26: Example 2-dimensional utility space . 21
Figure 27: Relative productivity and results from selected tools . 22
Figure 28: FDTE classification of selected tools . 23
Figure 29: Relative productivity and results from selected tools . 24
Figure 30: Productivity space and gain from selected tools . 25
Figure 31: FDTE cost implications . 25
Figure 32: Productivity gain from Formulation innovations . 27
Figure 33: Productivity gain from Design innovations . 28
Figure 34: Productivity gain from Translation innovations . 29
Figure 35: Productivity gain from Execution innovations . 30
Figure 36: Productivity impact of proposed innovations . 31
Figure 37: Utility comparison . 32
Figure 38: Productivity gain comparison . 33
Figure 39: SIRCA program roadmap . 34
Figure 40: Integrated Research Vision . 35

v

LIST OF TABLES

Table 1: SIRCA research thrusts . 5
Table 2: Baseline development costs . 26
Table 3: Impact of Formulation innovations . 27
Table 4: Impact of Design innovations . 28
Table 5: Impact of Translation innovations . 29
Table 6: Impact of Execution innovations . 30
Table 7: Research Thrusts and Models . 36

1

1 Executive Summary

Advances in FPGA-based reconfigurable computing (RC) technology over the past decade have aroused significant
interest throughout the community to exploit performance, power, area, cost, and versatility advantages in FPGA devices as
compared to conventional microprocessor and ASIC technologies. However, significant challenges exist in application
development tools and design methodologies for FPGA-based systems, a highly laborious and specialized activity, limiting
the scope and widespread use of this technology. A fundamental reformation in application design methodologies and
concepts to bridge the widening semantic gap between design productivity and execution efficiency is critical for the success
of this technology. This research study focuses on investigating key challenges, in terms of limitations in existing FPGA
tools, and identifying and developing potential research areas to address these challenges. The investigation conducted is
formulated in terms of several major tasks, including: (a) survey of use cases (current and projected) and the state of existing
tools; (b) characterization of limitations of existing flows, analysis of key technical challenges, and identification of potential
solutions; and (c) qualitative and quantitative analysis and evaluation of the solution space and projected impact.

Several key limitations and design challenges have been identified in current FPGA design methodologies based upon
survey results and FPGA tool and use case taxonomies. Chief among these limitations are: lack of Formulation concepts and
tools for rapid algorithm and architecture exploration, performance prediction, and tradeoff analysis; lack of high-level,
parallel Design languages enabling hardware-software co-design; unpredictable and excessively long Translation times; and
lack of system-level, run-time verification and analysis tools for debug and optimization. To address these challenges, new
methodologies and concepts based upon the four phases of application development, Formulation, Design, Translation, and
Execution (FDTE), are critical. Twelve strategic research thrusts have been identified and defined within these four
development phases that have the potential to revolutionize the application development productivity on FPGA-based
systems. Many of these potential solutions are significant research challenges requiring a fundamental reformation in design
methodologies and necessitating major research initiatives and investments in the field. The impacts of the proposed
solutions are shown to be significant in revolutionizing FPGA design productivity and execution efficiency, which is critical
for a wide variety of new and emerging uses and missions. Also, beyond the scope of RC, Formulation for RC has the
potential to aid and help address some of the design productivity challenges now facing general-purpose, fixed-architecture,
many-core computing technologies and therefore may potentially apply to a broadening array of computing paradigms.

As a result of this study a new research initiative, the Strategic Infrastructure for Reconfigurable Computing
Applications (SIRCA), is proposed. Research results from this program would ultimately lead to a high-productivity
integrated development environment (IDE) for FPGA-based applications. The proposed goals of SIRCA are:

a) Develop innovative end‐to‐end concepts, methods, and integrated toolsets to dramatically improve the
development productivity of FPGA‐based RC applications.

b) Revolutionize implementation of critical applications by broadening the use of FPGA‐based RC among domain
scientists and system designers for both high‐performance computing (HPC) and/or embedded (HPEC) scenarios.

2 Existing Limitations and Root Causes

Throughout this study, the analysis of challenges and limitations for application development and execution on FPGA-
based systems are classified based upon the four application development phases. As shown in Figure 1, these phases are
Formulation, Design, Translation, and Execution. These phases encompass the overall process of producing a final
Reconfigurable Computing (RC) solution, from problem formulation to execution. During Formulation, requirements are
expressed using abstract modeling thereby enabling strategic exploration of the algorithm and architecture of the application.
During the Design phase, details regarding the behavior and structure of the algorithm(s) and circuit architecture are
specified. Mapping from the structural representation provided during the Design phase to actual resources on the target
hardware producing a hardware/software solution for the platform occurs in Translation. Finally, during Execution, the run-
time services are integrated to support executing, monitoring, debugging, and optimization of the full application. The
baseline flow of tools for single-FPGA applications is augmented with additional tools, concepts, and support when
necessary to support applications that demand the performance of multiple devices. Within each of the four FDTE phases,
tools are further classified into three categories, based upon their function within that phase. As shown in Figure 2, these
categories are Performance Analysis, Development, and Validation.

2

Figure 1. Application development

phases

Figure 2. Tool taxonomy

A use case is a usage scenario that defines how the user perceives the RC system. Our use-case survey, conducted in Q3
of 2007 with approximately 30 groups using FPGA technologies, confirmed a broad range of applications, missions, and
needs in the community and the specific missions and target platforms explicitly driving challenges for the tool flows. Use
cases for the purpose of this study are general-purpose computing (GPC), high-performance computing (HPC) or high-
performance reconfigurable computing (HPRC), and high-performance embedded computing (HPEC). In the GPC use case,
the user perceives the underlying architecture as a standard von Neumann machine, such as a desktop. In the HPC/HPRC
usage scenario, the user perceives the underlying machine as a parallel computer. Finally, the HPEC usage scenario uses the
underlying machine as an embedded parallel computer. Figure 3 shows the usage taxonomy, where all mission scenarios are
categorized into either the single- or multi-FPGA baseline flow, with additional special mission requirements as needed (e.g.
for HPEC), such as real-time (RT), fault-tolerance (FT), partial-reconfiguration (PR), run-time reconfiguration, system-on-
chip (SoC), and energy-efficiency considerations.

The tool flow employed during application development, while influenced by the use case, is highly dependent upon the
end-user type. Application developers, for example, use a different set of tools than system designers. While application
developers are satisfied using tools that abstract away the hardware, system designers require low-level tools to optimize a
solution based upon the target hardware. Users are classified into two main categories, System Designers and Application
Designers. Application Designers are further divided into three subcategories, Domain Scientists, RC-Aware Domain
Scientists, and RC Engineers. The category of Domain Scientists encompasses users with little to no knowledge of the
underlying FPGA-based system. The category of RC-Aware Domain Scientists is comprised of users with enough
knowledge of the hardware to make explicit references to hardware-optimized functions and tools. Finally, the category of
RC Engineers encompasses users knowledgeable of the entire tool chain or flow. By contrast, System Designers includes
users who require advanced tools to optimize the hardware for specific target architectures. Figure 4 shows the 3-
dimensional representation of the taxonomies discussed above: tools, use case, and user taxonomy.

3

Figure 3. Use case taxonomy

Figure 4. FPGA application development space

Analysis of our user survey results revealed the fundamental limitations that exist in the current tools and design
methodologies for FPGA-based development. These limitations are described and categorized next, based upon each of the
four application development phases, Formulation, Design, Translation, and Execution.

2.1 Formulation Challenges and Limitations

Formulation has been largely overlooked by existing tools and methodologies and is either skipped completely or
conducted through iteratively traversing the later phases. Critical strategic design decisions are not made through algorithm
exploration, architecture exploration and mapping, and numerical analysis (e.g. dynamic range vs. precision) but rather ad-
hoc in the Design, Translation, and Execution phases [Edwards-97, Fornaciari-02, Gries-03]. As a result, this approach often
leads to wasteful and costly design iterations resulting from poor initial design decisions. The few tools that exist for
Formulation are largely inadequate and often specific to a single application domain. Furthermore, they are not integrated
with other key elements of the tool flow [Densmore-06]. Without a bridge to the Design phase, any analysis and algorithm
models created using such Formulation tools are discarded, necessitating a fresh start in the Design phase.

2.2 Design Challenges and Limitations

While there are many Design tools available, ranging from hardware description languages (HDLs) to high-level
languages (HLLs), such tools require a significant amount of hardware knowledge to use effectively [El-Araby-07a, El-
Araby-07b]. HDLs require extensive hardware expertise, thus excluding a potentially broader user base of domain scientists
and programmers. Conversely, HLLs lack the ability to adequately specify the concurrency required to fully exploit the
features of FPGA-based systems. The lack of integrated, system-level, hardware/software co-design tools and languages
necessitates manual design partitioning and in some cases requires separate software and hardware tool flows [Planti-99,
Antola-07]. Support for interoperability and portability among tools and designs is either nonexistent or limited to a small
group of supported tools and platform configurations [Huang-07]. Hence, even though new HLL tools offer limited
productivity improvements, more often the designs must be completely rewritten to execute on different platforms, severely
limiting design/core reusability and portability. Furthermore, the scalability of designs to and across multiple FPGAs (or
nodes) is largely left to the user, an arduous task at best, as there is generally no formal system-level support.

2.3 Translation Challenges and Limitations

Translation time, in particular place-and-route (PAR) time, is generally considered a major impediment to FPGA
development productivity. Translation algorithms are hampered by the unpredictable and often excessively long place-and-
route (PAR) times that can further vary depending on the tool chain [Li-95, Wang-96, Kannan-06]. As FPGAs become
denser and more complex, these issues will continue to worsen unless new approaches are taken in the Translation phase.
However, the proprietary and closed-source nature of these tools makes academic and research innovations difficult to
undertake and achieve [Li-06].

4

2.4 Execution Challenges and Limitations

In the Execution phase, tools and methodologies for run-time support are lagging, especially for verification, analysis,
debugging, and optimization at the system�level [Camera-05, Tong-07]. Run-time services to support mission�specific
requirements such as job scheduling and completion, checkpoint and heartbeat services for fault tolerance (FT), and
configuration management for run-time full/partial reconfigurations (RTR/PR) are also largely lacking. The few available
run-time services are limited in functionality and are platform-specific. These problems are made worse by lack of standards
for FPGA-based systems and subsystem architectures within which to integrate run-time tools [Huang-07].

2.5 Causes of the FPGA Productivity Problem

Current limitations and design challenges are symptoms of the FPGA productivity problem and not the root cause. The
problem can be traced back to the incremental and evolutionary growth of tools trailing the advances in hardware capacities
and innovations in FPGA devices. Figure 5 shows the evolution of FPGAs along with the concurrent evolution of design
tools over the same period. FPGAs in their primordial state were mainly used for glue logic on circuit boards with RTL-level
design tools. Advances in device architectures necessitated higher levels of design abstractions such as HDL, HDL+SW, and
the present day HDL/HLL. Each evolution of design tools was stacked ad-hoc on top of lower layers by device vendors to
merely enable use of underlying hardware resources. Tools were never designed for a broader customer base but rather were
built bottom-up from Translation and Design phases outward on a need-specific basis. Technological evolution and
commercial growth of this industry over the past decade has largely been aligned to support wire-line applications of the
rising communications and networking industry, the largest customer of FPGA technologies. Market survivability and
proprietary closed-source technology have been the chief impediments to broader growth and widespread acceptance in other
fields.

Figure 5. Technological evolution of FPGAs

3 Proposed Solutions
Computing is in the midst of an architecture reformation where unsustainable thermal and power overheads have

saturated achievable clock frequencies in modern processors, ending performance growth that previously depended upon
instruction-level parallelism and higher clock frequencies. The continued quest for higher performance has started a new
trend focusing on thread- and task-level parallelism, leading to the emergence of homogeneous and heterogeneous multi-and
many-core computing structures. Furthermore, increasingly high device design and fabrication costs will encourage use of
reconfigurable computing (RC) structures ranging from gate-level, reconfigurable devices such as FPGAs [Compton-02] to
interconnect-level, reconfigurable devices such as Tile-64 processor [Agarwal-07] to increase versatility and therefore market
size and economy of scale of otherwise prohibitively expensive parts. Thus, diverse design paradigms and architectures from
parallel and custom computing systems will eventually permeate into mainstream computing systems resulting in a
technological convergence and reformation. There are many promising technologies on this new wave as illustrated in
Figure 6. In this manuscript we do not distinguish between multi-core and many-core devices and use the notation MC to
refer to them collectively. The two primary classes of MC architectures technology are fixed MC (FMC) devices and

5

reconfigurable MC (RMC) devices. FMC devices have fixed hardware structure that cannot be changed after fabrication,
whereas RMC devices can change hardware structure post-fabrication to adapt to specific problem requirements. These
categories can be further divided into homogeneous and heterogeneous MC devices. Homogeneous MC devices have the
same type of processing core replicated across the chip, whereas heterogeneous devices have different types of processing
cores optimized for specific tasks. There are many inherent challenges with FMC devices. Application-specific FMC
devices (e.g. ASIC) are inflexible and expensive. Application-generic devices (e.g. Xeon and Opteron microprocessors) face
power, cooling, and performance challenges. Many niches exist between these extremes (Cell, DSP, GPU, NP, etc.) that
offer some flexibility within specific application domains. By contrast, RMC devices may offer the best of both worlds, with
inherent advantages and tradeoffs for speed, flexibility, low-power, adaptability, and economy of scale and size [George-08,
Williams-08a, Williams-08b].

Figure 6. Evolving landscape of future computing devices

The on-going reformation in computing device architecture is leading the way to application reformation to fully exploit
multiple types and layers of parallelism. The widening semantic gap between application design productivity and execution
efficiency poses significant design challenges to fully exploit the potential of heterogeneous, reconfigurable, and many-core
architectures. Complexity abounds and application developers must now understand and exploit parallelism. This problem is
new to the mainstream computing community, but it has been fundamental and familiar to the FPGA-based RC and HPC
parallel-computing community. In this application reformation, holistic concepts, methods, and tools must emerge to focus
upon computational fundamentals. We also need to learn lessons from other engineering fields and build a basis for an RC
engineering discipline.

Table 1. SIRCA research thrusts

 Research Thrusts F D T E

F

1. Strategic exploration ×
2. High-level prediction ×
3. Numerical analysis ×
4. Bridging design automation × ×

D
5. System-level parallel languages × ×
6. HW/SW co-design methods × ×
7. Reusable & portable design × × ×

T
8. Translation algorithms ×
9. Translation target architectures ×

E
10. Run-time debug & verification × ×
11. Performance analysis × ×
12. Run-time services ×

6

To accelerate and ensure the success of the application reformation, we introduce SIRCA, a Strategic Infrastructure for
Reconfigurable Computing Applications. SIRCA is proposed as new set of concepts to enable development of high-
productivity integrated environment for FPGA-based applications. We have identified and defined 12 strategic research
thrusts to address the limitations and bridge the semantic gap between productivity and execution efficiency. These are listed
in Table 1 and described below, organized across the four application development phases. Although some research thrusts
span across multiple phases as indicated by × marks in Table 1, they have been grouped under their primary application
development phases in our discussion below.

3.1 Formulation: Research Thrusts and Qualitative Impacts

The Formulation phase is the strategic design “playground” for managing the increasing complexity of an FPGA-based
RC application. This phase involves abstract modeling of the application and strategic exploration of the algorithm and
architecture of the application. Critical strategic design decisions and tradeoffs should be made in this phase, minimizing the
need for “seat-of-the-pants” decisions made in the detailed Design phase. There is no coding in the traditional sense in this
phase. The research thrusts identified for the Formulation phase are as follows.

Thrust #1: Strategic Exploration

Strategic exploration consists of high-level modeling and analysis techniques for rapid exploration and mappings of
algorithms and architectures to investigate viable combinations. It does not involve any coding in the traditional sense, rather
intuitive analysis and representation of the algorithm to best exploit parallelism. The representation can be graphical, textual,
or hybrid with inherent constructs for expressing multiple levels and layers of parallelism such as pipelines for expressing
deep parallelism and kernel replications for expressing wide parallelism. Algorithm modeling can be aided with libraries of
common, predefined patterns for rapid exploration enhancing reusability. Patterns are recurring solutions for commonly
faced problems, knowledge of which are often acquired through significant design experience [Dehon-04, Nagarajan-08].
Pattern-based design methodologies offer formal mechanisms for capturing and reusing these solutions or common recipes to
allow novice designers to reuse the wisdom of hardware experts, enhancing their productivity. A pattern-based methodology
integrated with the rest of design flow can offer a basis for strategic exploration, knowledge capture, reuse, and semi-
automation to the Design phase. Figure 7 illustrates pattern-based algorithm exploration using a probably density function
(PDF) estimation application as an example. Analysis of the pseudo-code for the PDF estimation algorithm reveals many
commonly occurring patterns such as pipelining, loop fusion, datapath replication, and memory-dependency resolution.
Algorithm modeling for this application can use pre-defined constructs for these patterns from a library for exploration and
mapping to a target platform, significantly increasing user productivity. Exploration and mapping of algorithm models to
target architectures can be performed using abstract hardware models of the target platforms specifying key architectural
features such as I/O bandwidths, internal/external memory banks, and FPGA resources. Strategic exploration inherently
involves iterative and incremental refinements to the algorithm models, mechanisms which are essential for design space
exploration.

Languages for algorithm modeling can be based upon existing modeling techniques used in software engineering such
as UML [UML] and ADDL [AADL], but may need to be retrofitted for hardware modeling and exploration. Alternatively,
new modeling languages and techniques may be needed to satisfy the requirements of strategic exploration for RC. Figure 8
illustrates an example of PDF estimation modeling using an RC Modeling Language (RCML) under development at the
Florida site of CHREC. RCML is a step towards exploring Formulation concepts and methods for FPGA application
development. RCML is a hierarchical, hybrid modeling approach with built-in constructs and patterns for expressing various
computation and communication mechanisms and exploring different levels and layers of parallelism.

Abstract hardware models of target architectures can also be specified in RCML for algorithm and architecture mapping
and exploration. Mapped algorithm and architecture models collectively form RCML system models which can interface to
other tools for prediction and design automation, as will be discussed later. Concepts of strategic exploration have also been
explored in a platform-based design (PBD) approach for embedded systems design presented in [Sangiovanni-Vincentelli-
07]. Platform-based design is a formal system-level development methodology based on the concepts of abstraction and
iterative refinement. It is a meet-in-the-middle process, where successive refinements of specifications meet with
abstractions of potential implementations. Figure 9 from [Sangiovanni-Vincentelli-07] illustrates function and architecture
separation and mapping in platform-based design process. Functional representations of application specifications in
platform-based design are completely independent of implementation architecture. Abstract hardware platform modules are
used to represent functional description of the architecture such as processors, memories, and custom hardware. The
mapping process is a design-by-refinement paradigm that binds application functionality to platforms to generate
implementation.

7

Figure 7. Pattern-based algorithm exploration

Figure 8. Example of PDF estimation modeling using RCML

Thrust #2: High-level Prediction

For mapping and exploration of algorithm models to target architectures, fast high-level performance and resource
prediction methods are essential to avoid wasteful design iterations caused by poor strategic decisions producing sub-optimal
designs. An application design for an FPGA-based system involves making many strategic decisions such as selecting data
precision, pipeline depth, number of core replications, memory hierarchy, and data locality for available resources.
Functionality and performance are inextricably linked to these decisions and dependent on correct choices for a particular
target platform. These decisions are platform-specific and vary from one platform to another. High-level performance and
resource prediction techniques can facilitate rapid design space exploration enabling informed strategic decisions by users.
These methods can be analytical [Smith-03, Holland-07], simulative [Grobelny-07, Scrofano-07], or a combination thereof and
should be seamlessly integrated in the design flow for rapid exploration. Analytical techniques typically model computational
throughputs and communication overheads via representative mathematical models and are often designed for fast but low-
fidelity performance and resource estimations. Simulative and hybrid analysis models are typically more detailed and designed
for higher fidelity estimates and used for virtual prototyping of applications and target systems.

for(i=0;i<num_samples;i++)

{ for(j=0;j<N;j++)
{ for(k=0;k<N;k++)

{

tx=(pdfx[j]-x[i]);
ty=(pdfy[k]-y[i]);

t=1-((tx*tx)+(ty*ty));

if(t>0&t<=1)
{
pdf[j][k]=pdf[j][k]+t;

}
}

}
}

w
w

w
.c

s
.u

ta
h.

ed
u/

~s
uy

as
h

/

PDF
Estimation
Application

(Algorithm)

Loop
Fusion
Pattern

Pipelining
Pattern
(kernel)

Memory
Dependency
Resolution

Pattern

Datapath
Replication

Pattern

8

Figure 9. Function/architecture mapping in platform-based design process [Sangiovanni-Vincentelli-07]

Figure 10 shows flowcharts and frameworks for two high-level, performance prediction examples under development at
the University of Florida CHREC site. The RC Amenability Test or RAT (Figure 10a) is an analytical prediction
methodology that models computational throughput and communication latencies to provide quick, ball-park performance
estimates for rapid design exploration [Holland-07]. RAT supports analysis of algorithms for specific target architectures by
parameterizing significant elements of application behavior while characterizing the FPGA system via microbenchmarks.
RAT is intended for use in strategic algorithm/architecture exploration to examine and refine the target algorithms for
optimal mappings on target architectures. Figure 10b shows a diagram of an RC simulation framework [Grobelny-07]. This
framework is a high-level, simulative, virtual prototyping tool for mapping arbitrary applications to targeted reconfigurable
systems. The framework splits the prototyping process into two separate domains, the application and simulation domains,
with six key components as shown. Under application domain, hardware and application characterizations can be performed
independently and simultaneously, leading to fast and accurate performance prediction results. Generated component models
and application scripts can also be reused for rapid analysis. System models driven by application scripts produce simulative
performance prediction results. Several diverse FPGA platforms such as a socket-based FPGA platform (XD1000), a PCI-
based FPGA platform (Nallatech cluster), and a proprietary FPGA platform (SRC-6) have been modeled using this
framework.

(a)

(b)

Figure 10. Flowcharts for high-level prediction methods: (a) RC Amenability Test (RAT), and (b) RC Simulation framework

9

Thrust #3: Numerical Analysis

The ability to use variable bit-widths for arithmetic computations gives FPGAs significant performance and resource
advantages over competing computational technologies such as microprocessors and GPUs. Numerical accuracy,
performance, and resource utilization are inextricably linked, and the ability to exploit this relationship is a key advantage of
FPGAs. Higher precision comes at the cost of lower performance, higher resource utilization, and increased power
consumption. Hence numerical analysis for optimizing bit-width selection for satisfactory implementation of target
algorithms on FPGAs is essential to reap their full benefit. Numerical analysis involves selecting minimum numerical
precision and data range. Data range analysis involves selecting minimum bit-widths to accommodate the dynamic range of
possible numeric values, whereas precision analysis involves studying sensitivity of outputs of arithmetic components to
changes in bit-widths [Lee-06]. Due to limited precision options such as 16-bit and 32-bit integers, and 32-bit float and 64-
bit double floating point numbers, numerical analysis is usually circumvented by programmers and computational scientists
using traditional microprocessor technologies, with the generally adopted principle being “when in doubt, use double.” But
with the ability to exploit variable bit-widths in FPGAs, there is a need for resurgence in concepts and integrated methods for
numerical analysis in the design flow.

[Lee-06] presents an automated static approach, MiniBit, for optimizing bit-widths for fixed-point feedforward designs.
The approach uses static analysis and is analytically able to guarantee maximum absolute error bounds. It uses a semi-
analytical precision analysis, with analytical methods used for error models in conjunction with simulated annealing to
optimize fractional bits. Figure 11 shows an overview of their approach. Although microprocessor technologies offer
limited choices for precision, significant performance gains can be realized by wise selection of numerical precision for
variables. Using higher precision such as double in place of float for microprocessor technologies comes at the cost of
significant performance and power penalties [Buttari-07]. [Buttari-07] presents an iterative refinement methodology of using
combinations of 32-bit and 64-bit floating point arithmetic precision to significantly enhance the performance of many dense
and sparse linear algebra algorithms while maintaining the 64-bit accuracy of the resulting solution.

Figure 11. Overview of MiniBit bit-width optimization technique [Lee-06]

Thrust #4: Bridging Design Automation

Formulation innovations are critical in addressing the productivity gap between application design methodologies and
execution efficiency on complex devices and system architectures. However, for widespread adoption of Formulation
methods among users, a bridge from the Formulation phase to the Design phase is critical. Using the algorithm and

10

architectural models to auto-generate code templates and portions of design from pattern and core libraries can significantly
enhance user productivity. This approach can form the basis for design automation where a domain scientist can model
algorithms using Formulation tools and directly run automatically generated executable code on the target platform.

Figure 12. Pattern-based exploration used for bridging Formulation models to Design

Pattern-based algorithm exploration detailed under Thrust #1 (Strategic Exploration, Figure 7) can significantly aid in
code generation. Pattern libraries used for algorithm modeling and exploration can be pre-populated with parameterized
designs for each pattern, which in-turn can be used for automated code and/or template generation for bridging Formulation
models to Design. This concept is illustrated in Figure 12. Although design patterns have been extensively used in software
engineering, their use in hardware design has been limited [Gamma-94]. [Dehon-04] identified and classified several
common hardware design patterns. Figure 13 illustrates an example time-multiplexing pattern from the paper. To our
knowledge, they presented the first formal documentation template for hardware design patterns modeled similar to software
engineering patterns and identified potential benefits to education and productivity via reuse, of cataloging common patterns.

Figure 13. Time multiplexing pattern example [Dehon-04]

Qualitative Impacts of Formulation Innovations

Figure 14 illustrates an integrated Formulation methodology based upon proposed research innovations. Innovations in
Formulation are expected to have significant impact on overall productivity and quality of solution. Formulation concepts
with methods and tools to bridge to the Design phase, will result in a major reduction in DTE (Design, Translation,
Execution) development costs, where DTE cost is a product of time spent per DTE iteration and DTE frequency (i.e. number
of DTE iterations). Coding would be minimized and Design phase would be semi-automated through patterns and code

11

templates reducing Design time. Also, DTE frequency would be reduced since better strategic choices in Formulation mean
less frequent design and re-design. This is illustrated in Figure 15. Abstract algorithm modeling and automation would
result in significant utility gain (and thus productivity improvement) for non-experts. Intuitive methods and tools amenable
to domain scientists and system designers will result in shorter learning curves, eliminating the need for user hardware
expertise and invigorating widespread use of FPGA-based RC technology. Moreover, Formulation concepts and methods are
potentially applicable to a broader range of technologies than only FPGA-based platforms, including systems featuring FMC
devices and non-FPGA RMC devices.

Figure 14. Formulation methodology

Figure 15. Impact of Formulation innovation on overall productivity

3.2 Design: Research Thrusts and Qualitative Impacts

While strategic design is performed at the Formulation phase, tactical design, which involves specification of exact
behavior, is performed in the Design phase. System-level design languages, hardware/software co-design, and other design
tools are necessary for design exploration, refinement and verification. Additional issues to be addressed include design
reusability, interoperability, and portability. Ideally, coding is minimized through the use of design patterns and code
templates resulting from the Formulation phase. The research thrusts identified for the Design phase are as follows.

Thrust #5: System-level Parallel Languages

RC development requires specification of computation, communication, and control for FPGAs and other components
such as microprocessors, graphics processing units (GPU), and serial/parallel bus interfaces. Development, debugging, and
verification of these systems involve many system-level considerations such as algorithm decomposition and architecture
mappings to exploit multiple levels of parallelism, inter-device communications and control, and system-level debug and
verification. Although some of these issues are explored in the Formulation phase, actual implementation occurs in the
Design phase. Thus, system-level languages with constructs for expressing multiple levels and forms of parallelism are vital
for efficient design implementation. Support for multi-paradigm and multi-level design abstractions in these languages can
significantly improve user productivity. Multi-paradigm support enhances design productivity by simplifying design for
diverse hardware devices. Hierarchical, multi-level design abstractions enable incremental and iterative design refinements
for productivity versus efficiency tradeoffs. Higher abstraction levels hide the underlying hardware details and rely on
automated compile and synthesis tools for efficient design implementations. Lower design abstractions expose the

12

underlying hardware details to the user enabling manual optimizations. While the former is more productive, the latter may
achieve higher resource and execution efficiencies.

Existing design languages used for FPGAs only address a subset of the system-level design issues. Most handle
hardware and software separately and provide varying degrees of design abstractions to the user. High-level languages
(HLLs) such as SystemC [SystemC] and Impulse C [Pellerin-05] offer improved user productivity, but trade off execution
and resource efficiency for limited portability and reusability. The Carte programming environment may achieve higher
efficiency but at the cost of portability [Poznanovic-05]. By contrast, hardware description languages (HDLs) such as VHDL
and Verilog often yield better performance, but come at the cost of greatly decreased design productivity. HDLs often also
reduce portability and reusability. Graphical design entry tools such as Simulink [Simulink] and LabView [LabView] may
also be used in conjunction with design translation tools such as Xilinx System generator [Sysgen], Altera DSP builder
[DSPB], and LabView FPGA [LViewFPGA]. These tools offer better design productivity, but again are restrictive in terms
of application domains, reusability, and design portability. Although these languages attempt to provide an abstraction layer
to hide hardware details, significant hardware knowledge is still required for developing optimized designs. Similar design
issues also face the conventional computing world with FMC devices, but are more severe with reconfigurable computing.
Therefore, research innovations in FPGA Formulation and Design languages may benefit the high-performance computing
and the mainstream computing technologies. By the same token, research innovations from fixed-computing programming
methodologies should be leveraged for FPGA-based computing systems. Concepts and languages developed under the
DARPA HPCS program such as CHAPEL, FORTRESS, and X10 could be leveraged for FPGA systems design [Ashby-07].
Design environments such as Gedae also provide potential for further research into system-level, parallel design languages
[Gedae].

The programming languages for device-level design must continue to evolve, where continuing innovation is needed to
raise the level of implementation abstraction above HDL to a true level associated with HLL-based design. In addition, as
shown in Figure 16(a) a critical component in this infrastructure that is largely missing is system-level parallel programming
languages or system coordination languages, be they graphical or textual, functional or imperative. Somewhat akin to MPI-
C, MPI-Fortran, UPC, et al. in the conventional HPC community, these coordination tools would need to harness the best of
the device design languages and operate above them, expressing and managing computations and data across multiple
devices.

 (a) (b)

Figure 16. Major alternatives and roles for system-level parallel languages in Design phase

As illustrated in Figure 16(a), the initial emphasis of the scalable coordination language would be in coordinating mostly
homogeneous computing with a set of tools and devices selected from a heterogeneous suite, where for SIRCA we emphasize

13

and feature the FPGA as the superior device technology for a broad range of Industrial, spacel and DoD missions. As these
innovations proceed, a later emphasis would emerge, with this system-level language responsible for coordinating
heterogeneous computing, involving many or all of a disparate set of devices (FPGA, CPU, GPU, Cell, etc.). Such a scalable
coordination language would help bridge between the Formulation and Design layers, from strategic to tactical design and
reuse. It would operate above a suite of one or more stove-pipes, pairings of design tools and devices (e.g. Impulse-C over
FPGA, Gedae over Cell, OpenMP over CPU, CUDA over GPU). It and the device design languages would collectively
leverage modules from expanding vendor and user libraries for code reuse and thereby exploit the productivity gains inherent
with such reuse.

As an alternative to system coordination languages, abstract system-level design languages, shown in Figure 16(b),
coupled with interrelated high-level synthesis tools, could potentially be used to completely separate function from
architecture, thus allowing a single behavioral description to be translated on to any underlying architecture. Of course, such
a language may sacrifice efficiency compared to device-specialized design languages, which are created by device experts to
efficiently solve device-specific problems. However, system design languages and system coordination languages need not
be mutually exclusive, potentially allowing the majority of an application to be specified with a system design languages,
with performance critical regions being specified using combinations of system coordination languages and device design
languages.

Thrust #6: Hardware/Software Co-design Methods

Current design flows for FPGA-based systems require separate specification and design of hardware and software.
Algorithm partitioning and task scheduling are typically performed manually, a priori, before design. Due to a lack of unified
hardware/software representations and co-design methodologies, system-level design, debug, and verification costs pose a
major bottleneck for design productivity. Integrated and unified hardware/software co-design methods that extend to the
system as a whole and not just FPGAs are essential for system-level user design perspective and user productivity. Although
this problem is not unique to RC systems and has been studied extensively by embedded systems and distributed computing
communities, it is much more challenging for RC systems due to multiple levels and layers of parallelism and available
hardware feature diversities [Saha-07a]. But, concepts and methods developed by these communities should be leveraged
and extended for FPGA-based system-level designs.

Figure 17. ReCos co-scheduling algorithm

The Polis project from UC Berkeley explored hardware/software co-design issues for real-time embedded systems
[Balarin-97]. It laid the foundations of the platform-based design methodology and provided a design flow for hardware and

14

software partitioning and system-level co-simulation. But, it supported only a single model of computation: co-design finite-
state machines (CFSMs). Metropolis was a follow-on project based on the principles of platform-based design and provided
a unified and integrated environment that included a meta-model framework to implement most models of computations
(MOCs) and related simulation and synthesis tools [Balarin-03]. Many concepts for hardware/software co-design explored in
these projects can be leveraged for reconfigurable computing systems. [Saha-07b] proposes a co-scheduling algorithm,
ReCos to address the specific hardware/software co-design concerns for reconfigurable computing systems. Figure 17
illustrates ReCos algorithm, which is under development at the George Washington University CHREC site. ReCos accepts
various objective functions such as communication overhead, resource constraints, reconfiguration overhead, and application
task graph as inputs. These objective functions are used to find suitable schedules for the tasks. The output of the algorithm
is an optimized task graph assigned to the corresponding processing elements.

Thrust #7: Reusable and Portable Design

Built-in constructs facilitating reuse and design portability have the potential to significantly increase user productivity.
Reusability in FPGA design is currently limited to reusing IP cores, but even IP reuse is restricted by lack of standards for
FPGA system and sub-system interfaces to make cores portable across platforms from different vendors. Reuse has to be
multi-faceted and must include reuse of cores, templates, patterns, knowledge, and run-time services. System-level
frameworks and integrated environments for portable and interoperable core libraries, templates, patterns, and services for
special mission scenarios such as fault tolerance, partial reconfiguration, and real-time systems are critical for fostering reuse.
Pattern-based design methodologies discussed under Formulation innovations offer one such mechanism for enabling reuse
of knowledge and common solution patterns. Portable core and service libraries and integrated frameworks enabling their
reuse can also significantly improve user productivity. Design portability is a major problem in FPGA-based computing
systems. Designs and cores written for a one platform often must be almost entirely rewritten to execute on other platforms.
Different design flows and diverse hardware features and platform interfaces make achieving design portability very
challenging. Interface standards for FPGA systems, sub-systems, and components can significantly enhance design
portability, fostering code reuse and significantly impacting user productivity.

Figure 18. Portable framework interface (PFIF) [Huang-08]

Research and standardization efforts from organizations such as OpenFPGA should be supported and enhanced
[OpenFPGA]. [T-GENAPI] is a technical working group at OpenFPGA for developing standard FPGA functionality
application programming interfaces. Their mission is to identify and develop an application-independent, common interface
for basic FPGA functionalities. [T-APPLIB] is a technical working group to develop application specific FPGA libraries.
Their mission is to define the elements needed for using portable, software-callable, application-specific programming
interfaces to incorporate FPGA functionality in traditional software applications. Examples of APIs may include BLAS,
LaPack, ScaLapack, SciLib, PCBL, etc. [T-CORELIB] is a technical working group to develop interoperable core libraries.
Their mission is to define the elements needed for increasing reusability and interoperability of the FPGA functional core

15

definitions that are incorporated into applications. These standardizations efforts are essential to achieve reusability and
portability in FPGA application development. [Huang-08] presents a Portable Framework Interface (PFIF) for IP cores under
development at the George Washington University CHREC site to address the portability issues of core libraries. PFIF
framework is illustrated in Figure 18. PFIF is a layered architecture that is built on top of the FPGA platform vendor services
and interfaces. At the software side, PFIF provides a set of common functions in order to allow the user to exchange data
between the microprocessor and the FPGA cores. On the hardware side, the Portable Framework Control Logic (PFCL) acts
as a wrapper of the vendor services and includes the vendor specific interfaces for the local memory controllers and the
communication services. PFC interface to the rest of the system is standard, hence achieving the required core portability.
Services logic on top of PFCL provides diverse services to the user logic that can be used by the IP, including logical
memory banks, registers, FIFOs, and direct memory access (DMA) capabilities to access the microprocessor memory. A
GUI supports easy customization and use of the PFIF services.

Qualitative Impacts of Design Innovations

Innovations in Design phase result in reduction in Design time due to more intuitive and high-level development
methodologies and tools. Mechanisms for reuse and portability significantly improve design productivity. Better Design
tools mean less frequent design and re-design, reducing not only Design time but also DTE frequency (number of iterations
or cycles through the Design, Translation, Execution phases).

3.3 Translation: Research Thrusts and Qualitative Impacts

Translation tools, in particular delays in place-and-route (PAR) time, are often regarded as one of the biggest
impediments to FPGA development productivity. Translation cost, which we define as the product of Translation time and
Translation frequency (i.e. how often one must translate), is rapidly increasing due to larger chip densities. Translation time
can be improved through innovations in Translation algorithms and through innovations in the architecture of the target
devices. Translation frequency can be reduced through innovations in the other phases. The research thrusts identified for
the Translation phase are as follows.

Thrust #8: Translation Algorithms

Innovations in Translation algorithms may significantly reduce Translation times. However, closed source and
proprietary Translation tools have limited innovations by academic and other research communities. Therefore, one
challenge is in fostering third-party algorithmic innovations while maintaining the intellectual property rights of vendors.
Government investment can be the necessary catalyst for encouraging commercial FPGA companies to provide support for
third-party innovations.

Research emphasis on high-level synthesis to produce better inputs for PAR tools can help improve Translation times
[Buyukkurt-06]. Research innovations directed towards parallel Translation algorithms exploiting newer multi-core
microprocessors can also significantly reduce Translation times [Haldar-00, Wrighton-03, Fobel-07]. Other potential
research directions to expedite Translation times include region-based PAR methods to reduce routing complexity and
improved PAR techniques to tradeoff routing effort and/or resource utilization for reduced Translation times [Mulpuri-01,
Lysecky-06]. To explore new algorithms and target architectures, and make research innovations from third party
researchers possible, standard abstractions for FPGA device architectures are essential. One technique is versatile place and
route (VPR). As illustrated in Figure 19, the VPR technique enables interchanging algorithms and device architectures to
explore new methods and better device targets [Betz-97].

16

Figure 19. Example VPR technique for improving Translation algorithms [Betz-97]

Thrust #9: Translation Target Architectures

An alternative to improving Translation times is an emphasis on innovations in device architectures to provide better
targets for PAR tools [Lysecky-06, Stitt-07]. The fine-grained reconfigurability and device complexity of current FPGA
devices increases complexity of existing Translation algorithms. FPGAs provide a highly flexible routing structure that
occupies the majority of its silicon area. Although this flexibility is needed for many circuits (e.g. glue logic), it may be
overly sophisticated for many applications with data-flow architectures, which pre-dominantly use “nearest neighbor”
communication patterns such as systolic arrays. Innovations in routing strategies and configurable logic structures may
reduce Translation algorithm complexities thereby significantly reducing the Translation times. One possible disadvantage
of Translation target architectures is that decreased routing flexibility may degrade circuit performance. However, many
designers may be willing to accept a small overhead for a large reduction in Translation times.

One approach for reducing routing complexity is the use of hierarchical routing structures with tool emphasis on
communication and data locality. Coarser device architectures may also help reduce PAR complexity (e.g. Mathstar FPOA).
Virtual, coarse-grain architectures built on top of fine-grained FPGA devices may also provide similar functionality without
the need for new silicon devices. For example, [Lysecky-04] presents an alternate routing-oriented FPGA fabric and custom
routing algorithm (ROCR) for just-in-time hardware compilation (see Figure 20). Each CLB block in this fabric is connected
to a single switch matrix providing all input/output connections for the CLB. The fabric has restricted routing resources as
compared to traditional FPGAs and provides routing of each net only to a single pair of channels throughout the configurable
logic fabric. The employed routing restrictions greatly simplify the routing algorithm enabling just-in-time compilation.
Their experiments demonstrate 10× faster compilation time as compared with the well known versatile place and route (VPR)
tool suite at the cost of 10% increase in additional routing resources and 32% reduction in circuit performance as compared to
VPR’s timing-driven router. The circuit performance when compared with VPR’s routability-driven router is 10% faster
using their ROCR router.

17

(a) (b) (c)

Figure 20. Routing oriented FPGA fabric for just-in-time compilation. (a) Configurable logic fabric, (b) configurable logic

block,

and (c) Switch matrix architecture [Lysecky-04]

Qualitative Impacts of Translation Innovations

Although Translation time is generally considered a major bottleneck in development productivity, reductions in the
number of iterations through the Translation phase could also have a significant impact on the overall development
productivity. Innovation in Translation algorithms and device architectures will result in reduced Translation time, but not
Translation frequency. Reductions in Translation frequency can be achieved via innovations in Formulation, Design, and
Execution phases. Therefore, overall development productivity impact of innovations in Translation phase may be modest as
compared to impact of Formulation and Design innovations. However, it should be noted that reducing Translation time may
have many intangible benefits in terms of human factors. Faster Translation may impact debugging iterations and user
interactions with the design and hence could result in higher productivity gains.

3.4 Execution: Research Thrusts and Qualitative Impacts

Methods and tools are necessary to provide run-time services in the Execution phase to support the debug, verification,
analysis, and optimization of FPGA-based RC applications. The research thrusts indentified for the Execution phase are as
follows.

Thrust #10: Run-time Debug and Verification

As FPGA devices, systems, and applications continue to grow in size and complexity, the difficulty and cost of
debugging and verification increases as well. Unlike traditional software programs, it is not a trivial task to manually print
and check the state of particular variables during execution. Instead, FPGA designers must manually implement specific
circuitry for the purpose of gathering and returning debugging information. This process is very inefficient, often leading to
many wasted design iterations. To maximize productivity, gathering and displaying data for the purpose of debugging and
verification should be made transparent to the user, especially domain scientists who are likely to be designing at a high
abstraction level. Available run-time analysis tools such as Xilinx Chipscope and Altera SignalTap are complex and require
significant expertise in hardware design. Also, these do not address any system-level issues and are limited to a single
FPGA. System-level, run-time debug methods and tools can significantly reduce debug and verification costs potentially
eliminating wasteful debug iterations. Interface standards for FPGA systems and sub-systems with built-in debug support
can help reduce verification times and increase the overall productivity.

18

Figure 21. Possible stages for design instrumentation [Graham-01]

It is essential to instrument designs to add support for debug and verification. Instrumentation can occur at different
design stages as illustrated in Figure 21 from [Graham-01]. Instrumentation can occur at the design source level
(HLL/HDL), at the netlist level, or at the bitstream level. Alternately, dedicated debug circuitry can also be pre-fabricated on
the FPGAs limiting the required instrumentation. [Graham-01] illustrates direct instrumentation of FPGA bitstreams to
provide automated debugging capabilities. [Camera-05] demonstrates debug capabilities by inserting specialized logic before
synthesis to allow for variable buffering, assertion checking, and automatic checkpointing. Source-level design
instrumentation illustrated in [Koehler-07] can be used for debug and optimization of the designs. Both Xilinx and Altera
provide commercial packages for automated debugging and instrumentation that allow users to insert an embedded logic
analyzer (ELA) into their design. Altera’s SignalTap [Altera-99] provides a GUI through which the user defines how the
ELA connects to their FPGA design, which is then automatically included in the design’s netlist. ChipScope [Xilinx-00]
from Xilinx also allows the user to insert an ELA to their design, though ChipScope’s ELA cores must be added manually to
the HDL source code. An advantage of the ChipScope ELA is that modifications to the signals that interface the ELA may
be made without a complete recompilation of the design. All of these approaches are single-device debug techniques. For
system-level designs of FPGA-based RC systems new methods and concepts are required for automated instrumentation, data
collection, visualization, and analysis for debug and verification of the system as a whole. [Tomko-00] demonstrates an
environment for co-debugging of hybrid applications consisting of C/C++ software components and VHDL hardware
components. The environment defines a standard interface that allows debugging data to be collected from both software and
hardware components, and viewed within a VHDL simulator. Although such instrumentation techniques for debug may
impose modest performance and resource penalties, the cost paid would be insignificant in comparison to improved
productivity. Also the instrumentation techniques for debug and verification may equally be used for identifying design
bottlenecks for critical performance and resource optimizations which may offset any penalties paid.

Thrust #11: Performance Analysis

As with debug and verification, run-time performance and resource analysis is also extremely challenging in FPGA-
based HPC and HPEC systems. Increasing system-level complexities make identifying performance bottlenecks and
achieving desired performance difficult due to lack of concepts and tools for run-time analysis of RC applications. Although
performance analysis concepts and tools are well researched and widely available for traditional parallel computing
applications, those tools fail to address the increased complexity of RC systems. The behavior of an RC application can be
particularly difficult to observe and understand due to additional levels of parallelism and complex interactions between
heterogeneous resources. Methods and tools tailored for run-time, post-mortem analysis of RC applications can help to
quickly identify and locate critical performance and resource bottlenecks. Automated analysis and visualization of run-time
performance data displayed to the user in an intuitive, high-level format can substantially improve user productivity,
eliminating the need for users to manually parse large amounts of run-time performance data. Furthermore, the gathering of
performance data should also be largely automated, requiring minimal additional effort from the user. Without high-level

19

automated tools for performance analysis, the task of run-time performance optimizations becomes tedious and unattractive
to domain scientists.

[Koehler-07] presents a unified, run-time performance analysis framework for RC applications under development at the
University Florida site of CHREC. This framework builds on top of and extends an existing HPC performance analysis tool,
Parallel Performance Wizard (PPW), the first-ever comprehensive performance tool for UPC and SHMEM computing, also
developed at Florida. Figure 22 shows various performance analysis stages used by their framework. The original
application is first instrumented to modify component interfaces and add a hardware measurement module (HMM) to collect
run-time data (see Figure 23). The HMM is responsible for implementing all profile, trace, and sampling capabilities, as well
as packaging that data for retrieval by software. The instrumented application is then executed and run-time data is collected
and analyzed for potential bottlenecks. The application is then optimized based-on the analysis results to achieve the full
potential of the existing hardware resources. [Curreri-08] presents extensions of this framework to instrument and analyze
high-level language FPGA applications.

Figure 22. Stages of performance analysis

[Koehler-07]

Figure 23. Source-level additions made by instrumentation [Koehler-07]

Thrust #12: Run-time Services

Run-time services can greatly simplify the FPGA development process by reducing the number of system-level issues
that must be addressed by designers. By providing services at run-time that user applications can exploit, designers can
obtain the desired functionality by targeting the service and rely on the execution platform to do the rest. Furthermore, as
FPGAs are used in more diverse scenarios, the services needed to support their execution will become more diverse and
important as well. Run-time services for FPGA systems include but are not limited to scheduling, fault tolerance
management, partial-reconfiguration management, and standard operating system services such as threads and
communication. Currently, these services are not provided to the user when development begins. Therefore, any FPGA
design which requires the functions of such services must fully implement those functions manually. Thus, run-time services
would make the implementation of such functions simpler, efficient, more reliable, and reusable.

[Lubbers-07] presents ReconOS operating system services for FPGA-based embedded real-time systems. Based on the
eCos operating system, ReconOS supports both software and hardware threads in a single unified programming model.
Hardware threads execute on FPGAs and interface with the operating system using the operating system interface (OSIF).
OSIF provides thread synchronization services giving software-like abstraction of the reconfigurable hardware for the
programmer. Figure 24 illustrates the ReconOS system architecture. [Troxel-06] presents reliable management services for a
space supercomputer, the NASA Dependable Multiprocessor (DM), under development for NASA by the University of
Florida and Honeywell and built using Commercial-Off-The-Shelf (COTS) technologies. The DM platform is composed of a
collection of COTS data processors augmented with COTS FPGAs and radiation hardened system controllers to interface
with the spacecraft control computer. A middleware layer provides various components such as reliable messaging, fault-
tolerance managers and agents, and job managers and agents as illustrated in Figure 25. These components provide reliable

20

run-time communication, fault recovery, and job scheduling and management services for the applications executing on data
processors and FPGAs.

Figure 24. ReconOS System architecture [Lubbers-07]

Figure 25. DM Middleware Architecture [Troxel-06a]

Qualitative Impacts of Execution Innovations

Superior Execution tools can offer significant development cost savings, and reduction in debug time and DTE
frequency. Critical optimizations and bottleneck elimination can also result in significant utility gains, consequently
increasing productivity.

4 Quantitative Productivity Analysis with Existing Tools

In the previous section, we presented the qualitative impact of the proposed innovations on productivity for each
strategic research direction. Next, a two-prong approach to quantitatively predict the impact of the innovations on
productivity will be described. A quantitative analysis of the impact based on existing tools will be discussed in this section,
followed by a quantitative analysis of the impact based on the projected future of the FDTE innovations in Section 5.

Both quantitative impact analyses are based on the following RC Productivity Model. Productivity, as defined by the
DARPA HPCS program [Kepner-04a], is the ratio of utility over development cost:

C

U
 (1)

Utility U is a function of a set of weighted attributes ai used to measure the usefulness of a design. Examples of utility
attributes include speed, throughput, power efficiency, and area efficiency. The magnitude of utility can be measured as the
length of the utility vector in a multi-dimensional utility space:

 UlengthU  (2)

21

Figure 26. Example 2-dimensional utility space

Figure 26 shows an example of a 2-dimensional utility space, using utility attributes weighted speedup S and power
savings P. For example, the utility for Design 1 is:

  2
1

2
1111 PSUUlengthU  (3)

The development cost C is the work required to achieve that utility and is typically measured as development time (e.g.
man-hours) or dollars. The cost for an RC application prototype is modeled as the summation of the costs for the four phases
of the FDTE model: Formulation (FC), Design (DC), Translation (TC), and Execution (EC). Each application may require

the development of multiple (k) prototypes. Each prototype is represented as a design iteration i.

 



k

i
iCCCCC ETDF

1
 (4)

The productivity number is often more meaningful when compared with a reference. Hence, our analysis will mainly
calculate relative productivity gains given by the ratio of two productivities. Typically, 2 is used as a reference:

2

2

1

1

2

1

C

U

C

U
GaintyProductivi 




 (5)

Again, a two-prong approach to quantitatively validate the impact of the innovations on productivity will be described.
The quantitative analysis of the impact based on existing tools will follow in this section. A quantitative analysis of the
impact based on the projected future of the FDTE innovations will be discussed in Section 5.

The analysis of current tools allows an understanding of the potential of the proposed FDTE Methodology. Current tools
are primarily Design-centric, where it is usually assumed that the user has the necessary hardware development skills for
required for RC platforms.

The comparative study conducted in [El-Araby-07a, El-Araby-07b] considered some of the available tools; see results
shown in Figure 27. The goal of that study was to measure (or estimate) the productivity of the selected tools taking into
consideration the acquisition time (i.e. the time required to learn the tool), the development time, and the utility. The utility
was measured based on how good the tool is in reaching the target (or optimal) requirements, e.g. frequency and area
utilization. The table in Figure 27 shows the average results obtained from different groups of users developing a set of IP
cores using the selected tools. The graph in Figure 27 shows the relative productivity space of the tools based on the total
cost. The target (or optimal) utility was set to 200 MHz for frequency and 0% for area utilization.

Previous results in Figure 27 show the productivity of each individual tool. However, it is possible, as shown in Figure
28, to classify these tools following the FDTE Methodology. Although all of the tools are Design-centric, some of them
(SysGen and RC Toolbox) present environments that enable a higher design abstraction. These tools were selected to
represent the current status of Formulation tools, although their formulation capabilities are limited (or they lack formulation

22

capabilities). We classified these tools as Formulation-Like Flow tools. The remaining tools were grouped as Design-Centric
Flow.

Figure 27. Relative productivity and results from selected tools

In addition to the selected tools, we needed to identify Translation and Execution tools. However, Translation and
Execution are not design-entry phases; they are optimization and debug phases. Translation tools are involved in the design
process in a transparent way, like for example, when users need to synthesize or execute P&R tools. There are two kinds of
Translation tools. First, there are synthesis and Place & Route tools, most of which are automatic tools that allow the user to
improve the results by increasing the effort or changing some execution parameters. Second, there are manual place and
route tools like PlanAhead, where the user needs a deeper knowledge of the reconfigurable hardware. We observed the fact
that, to use these tools, it is required to execute the Formulation and/or Design phases first. Therefore, to evaluate these tools,
a Translation/Execution-Centric Flow will be considered. With these assumptions, we define:

 Translation/Execution Utility:

o 20% Improvement with respect to Design (e.g. Area, Frequency) based upon vendor literature

 Translation/Execution Cost

23

o Acquisition timeTranslation = Acquisition timeFormulation + Acquisition timeDesign

o Development timeTranslation = TTranslation + MIN(Development timeFormulation, Development timeDesign)

Based upon classification of tools and previous definitions, Figure 29 summarizes the estimated values for each type of
FDTE tools showing the execution costs in form of the acquisition and the development time as well as the utility numbers
for the frequency and the utilized area. Considering this data, the productivity results of each development phase can be
represented as shown in Figure 30. The Formulation-Like design environments that enable a higher design abstraction show
the best productivity gain because they achieve the best results in terms of frequency and utilized area in the shortest amount
of time. The lowest productivity gain is achieved by the Translation/Execution-Centric Flow because the development costs
are significantly higher. Development tools at that level provide capability to significantly influence placement and routing
of circuit components which results in long acquisition and especially long development times.

The observation based on the study of current tools indicates that Formulation as an entry point has a potential for higher
productivity impact. Spending time and effort in Formulation can result in a higher productivity than Design or
Translation/Execution. Furthermore, Formulation is performed on a more abstract level and does not require detailed
knowledge about the targeted RC system. This higher level of abstraction can potentially expand the user base to domain
scientists and programmers significantly improving their design productivity. However, the current Formulation tools are
still immature because they are close to Design-Centric than Formulation. Another important need is the seamless integration
of the different tools (e.g. IDE with multiple entry points for different users).

Finally, based on the results obtained from current tools, we can identify the cost implications of the FDTE
methodology. While emphasizing that Formulation may have maximum potential impact on productivity, it entails
significant tool development complexity and the associated costs for the vendor, as shown in Figure 31.

Figure 28. FDTE classification of selected tools

Figure 29. Relative productivity and results from selected tools

24

Figure 30. Productivity space and gain from selected tools

25

Figure 31. FDTE cost implications

26

5 Quantitative Productivity Analysis with Future FDTE Innovations

Before presenting the details of the analysis, we first describe our general approach and define the key assumptions.
This information provides the background for the projections to be estimated.

Approach. Productivity impact is determined by many factors, interrelated in a complex manner. To keep our analyses
tractable and to gain a clear understanding of the analyses, our approach is to break the complex problem into its component
factors in order to isolate and focus on the impact of each factor. Our analysis is set up as follows. There are five analyses.
For the first four, the impact from the increase in utility U is assumed to be minimal, while we analyze the productivity effect
based only on the change in cost C. These four analyses are as follows:

1 Assume that there are innovations only in the Formulation phase (as a result of SIRCA), with no innovation in the
other three phases (holding them constant for simplicity and clarity), and determine the end-to-end development cost
and the impact on productivity.

2 Similar to #1, but with innovations only in the Design phase, determine productivity impact.

3 Similar to #1, but with innovations only in the Translation phase, determine productivity impact.

4 Similar to #1, but with innovations only in the Execution phase, determine productivity impact.

For Analysis #5, using a different scenario, we assume the impact from the increase in cost C is minimal and we analyze the
productivity effect based only on the change in utility U.

For all five analyses, the cost of each phase is the product of time spent in that phase and the number of iterations

through that phase (i.e. frequency). For example, the Translation cost is TTT tfC 

Two projections were made to compare to a defined baseline: conservative, and optimistic. The conservative projection
represents expected improvements that should certainly result from SIRCA. Optimistic estimates represent ambitious but
attainable productivity gains.

Table 2. Baseline development costs

Development
Phase

Development cost (hrs)

Baseline Rationale

Learning Curve 400 (s/c) HDL learning curve

Formulation 40 (1w) Current Formulation methods

Design 480 (12w) Estimated from literature

Translation 200 (5w) Estimated from experience

Execution 280 (7w) Estimated from literature

Total 400 (10w) + 1000 (25w) = 1400 (35w)

Baseline assumptions. The five analyses assume a baseline development cost as a reference for relative productivity
gains. The assumptions for the baseline costs are as follows. The percent breakdown for the baseline development time per
phase was inferred from reported percentages of five HPC and HPEC software projects; Hawk, Saturn V, SAGE, NTDS, and
Gemini [Kepner-04b, Kendall-05]. Note that the percentages were adjusted to reflect the development of an FPGA-based RC
application (e.g. longer Translation time):

Formulation = 5%, Design = 50%, Translation = 20%, and Execution = 25%

The total baseline development time is assumed to be 1000 hrs. Also, the analyses assume the user is a domain scientist
knowledgeable only in sequential programming. The baseline code is assumed to be developed in HDL, with a learning
curve cost of 400 hrs (approximate time for an intensive one-semester university course (s/c)). Based on these assumptions,
Table 2 shows the resulting numbers for the baseline development costs (in units of hours and weeks).

5.1 Impact of Formulation Innovations

For this analysis, the assumption is that we are considering innovations only in the Formulation phase (as a result of
SIRCA), and there are no innovations in the other three phases (holding them constant). Also, we assume that there is no

27

increase in utility U, but there will be a decrease in cost C. This approach represents the scenario of a user who is capable of
getting the most utility out of a design. Thus, new innovations in Formulation tools will not help him/her obtain more utility
(e.g., speedup). However, it can help him/her produce a design faster (decrease in cost C).

Detailed results are shown in Table 3 and corresponding data is plotted in Figure 32. Cost improvements due to
innovations in each FDTE phase are estimated based on empirical knowledge. Note that the rationale for cost reduction for
each row of the table is also given. As is evident, if we spend more time and effort in the Formulation phase (80 hours or 2
weeks for both the conservative and optimistic cases), it results in significant reduction of cost in the other three phases.
Innovations in Formulation, with methods and tools to bridge to the Design phase, will result in a reduction in the learning
curve and Design time. Coding would be minimized and Design phase would be semi-automated through design patterns
and code templates from Formulation. Also, the number of prototype designs required and DTE frequency would be
reduced, since better strategic choices in Formulation means less frequent design and re-design.

Table 3. Impact of Formulation innovations

Development
Phase

 Development Cost (hrs)
Baseline Conserv. Optim. Rationale

Learning Curve 400 (s/c) 40 (1w) 8 (1d) Reduction in time required to learn high­level tools & methodologies
Formulation 40 (1w) 80 (2w) 80 (2w) New FDTE will spend more time in F to save time in DTE

Design 480 (12w) 160 (4w) 20 (½ w)
Reduction in Design time (templates) & frequency (strategic
exploration)

Translation 200 (5w) 80 (2w) 20 (½ w)
Reduction in Translation frequency, optimistically approaching one
step

Execution 280 (7w) 160 (4w) 20 (½ w)
Lower frequency (strategic exploration) & less run­time optimization
& bugs

End­to­End
Dev Cost 1400 520 148

Productivity
Gain

 1400/520
= 2.7

1400/148
 = 9.5 (from 35 weeks to only 3.7 weeks)

Figure 32. Productivity gain from Formulation innovations

5.2 Impact of Design Innovations

Similar to the previous subsection, the assumption here is that we are considering innovations only in the Design phase
(as a result of SIRCA), and there are no innovations in the other three phases. Also, we assume that there is no increase in

28

utility, but there will be a decrease in cost. The detailed results are shown in Table 4 and the corresponding data is plotted in
Figure 33. The rationale for the cost reduction for each row of the data is also given.

In general, innovations in the Design phase result in many of the same benefits as Formulation. Improved Design
methodologies lead to considerable DTE cost reduction, including a reduction in Design time, which is a result of intuitive,
high-level design tools. There is also a reduction in DTE frequency (e.g. less need for debugging and optimization) due to
better concepts and tools. However, due to lack of strategic exploration in Formulation, it does not reduce prototype
iterations caused by poor strategic design decisions.

Table 4. Impact of Design innovations

Development
Phase

 Development Cost (hrs)
Baseline Conserv. Optim. Rationale

Learning Curve 400 (s/c) 80 (2w) 16 (2d) Reduction in time required to learn high­level tools & methodologies
Formulation 40 (1w) 40 (1w) 40 (1w) No impact
Design 480 (12w) 240 (6w) 80 (2w) Reduction in Design time due to intuitive languages & methodologies
Translation 200 (5w) 120 (3w) 40 (1w) Fewer design flaws lead to reduction in Translation frequency
Execution 280 (7w) 200 (5w) 40 (1w) Fewer design flaws lead to reduction in Execution(e.g. debugging frequency)
End­to­End
Dev Cost

1400 680 216

Productivity
Gain

 1400/680
= 2.1

1400/216
 = 6.5 (from 35 weeks to only 5.4 weeks)

Figure 33. Productivity gain from Design innovations

5.3 Impact of Translation Innovations

As before, we are considering innovations only in the Translation phase, thus we assume that there are no innovations in
the other three phases. We also assume that there will be a slight increase in utility and a decrease in cost. The detailed
results are shown in Table 5 and the corresponding data is plotted in Figure 34.

Although Translation time (T time) is often considered one of the biggest impediments to FPGA-based development
productivity, it is shown here that the impact of innovations in reducing T time may not affect overall productivity
significantly. The reason is that innovations in Translation do not affect F, D, or E costs, nor the T frequency, which is more
critical than just reducing T time. As shown in the earlier analyses, T frequency reductions can be achieved via innovations
in the F, D, and E phases. Note that unlike the previous analyses, we also assume a 10% (conservative) and a 30%
(optimistic) gain in utility, assuming better Translation algorithms and devices will improve utility. Even with this
assumption, the productivity gain is modest.

29

It should be noted that our analyses does not account for any intangible benefits of reductions in Translation times.
Benefits of faster Translation may impact debugging iterations and user interactions with the design and could result in
higher productivity gains. Although reductions in Translation frequency may have higher impact on overall productivity,
Translation time improvements are vitally important and innovations here must not be ignored.

Table 5. Impact of Translation innovations

Development
Phase

 Development Cost (hrs)
Baseline Conserv. Optim. Rationale

Learning Curve 400 (s/c) 400 (s/c) 400 (s/c) No impact
Formulation 40 (1w) 40 (1w) 40 (1w) No impact
Design 480 (12w) 480 (12w) 480 (12w) No impact
Translation 200 (5w) 40 (1w) 8 (1d) Significant reductions in Translation time, not frequency
Execution 280 (7w) 280 (7w) 280 (7w) No impact
End­to­End
Dev Cost

1400 1240 1208

Utility Gain 10% 30% Better resource utilization and clock frequencies due to innovated tools

Productivity
Gain

1.1 × (1400/1240)
 = 1.2

1.3 × (1400/1208)
 = 1.5

Figure 34. Productivity gain from Translation innovations

5.4 Impact of Execution Innovations

As before, we are considering innovations only in the Execution phase, thus we assume that there are no innovations in
the other three phases. We also assume that there will be a slight increase in utility and a decrease in cost. The detailed
results are shown in Table 6 and the corresponding data is plotted in Figure 35. The rationale for the cost reduction for each
row of the data is also given.

Innovations in Execution methods and tools will reduce debug, verification, and optimization costs in the DTE phases.
They will also reduce the DTE frequency to minimize the number of debugging and optimization cycles. The learning curve
is reduced since run-time analysis tools will become more intuitive to the user. As in the case of Translation, this analysis
assumes a 10% (conservative) and a 30% (optimistic) gain in utility because innovations in Execution methods and tools will
help identify bottlenecks and critical design optimizations that may increase utility (e.g. speedup).

30

Table 6. Impact of Execution innovations

Development
Phase

 Development Cost (hrs)
Baseline Conserv. Optim. Rationale

Learning Curve 400 (s/c) 360 (9w) 320 (8w) Easier learning curve for run­time analysis & optimization tools
Formulation 40 (1w) 40 (1w) 40 (1w) No impact
Design 480 (12w) 360 (9w) 280 (7w) Reduction in Design frequency and debugging time
Translation 200 (5w) 120 (3w) 80 (2w) Fewer debugging cycles leads to reduction in Translation frequency
Execution 280 (7w) 160 (4w) 40 (1w) Better tools quickly identify bottlenecks and bugs
End­to­End
Dev Cost

1400 1040 760

Utility Gain 10% 30% Critical design optimization and bottleneck identification

Productivity
Gain

 1.1×(1400/1040)
 = 1.5

1.3×(1400/760)
 = 2.4

Figure 35. Productivity gain from Execution innovations

5.5 Impact Summary Based upon Cost, Holding Utility Constant

Based on the four analyses described in the previous sections, we can rank the research directions in terms of the
projected impact of the innovations for the respective development phases. The projected productivity impact for each phase
is plotted in Figure 36, using the baseline development cost as a reference.

1. Formulation innovations have the potential for maximum impact on productivity. Also, Formulation innovations
have the potential to dramatically increase the user base for FPGAs, cascading a multiplicative effect for
productivity. Finally, although strategic exploration concepts are central to RC, they are also potentially applicable
to the GPC world.

2. In general, innovations in the Design phase result in many of the same benefits as Formulation. Design innovations
by themselves increase overall productivity. However, Formulation and Design innovations together will likely
generate maximum impact.

3. Execution innovations are important for providing critical run-time information. They enable the reduction in
optimization, debug, and verification costs.

4. Improvement in Translation time is beneficial, but that alone is less impactful on overall productivity.

31

Our analyses have focused on the isolation of the impact for innovations in each development phase. It should be clear
that the cumulative impact for all four phases will yield maximum benefit. Unfortunately, since the cumulative productivity
impact is a complex function of the individual impacts, we cannot simply add them together. However, we can make some
meaningful observations. Recall that innovations in all four phases can combine to drive DTE down, whereas none of the
other innovations will drive F lower. Thus, theoretically the maximum achievable productivity, considering development
time alone, will be limited by the Formulation cost and learning curve. Thus, as DTE costs approach 0, the development cost
is equal to the learning curve cost plus the Formulation cost. As shown by the dashed horizontal lines in Figure 36, for the
conservative case, the gain approaches 1400/120 = 12, and for the optimistic case 1400/88 = 16. Note that these theoretical
maximums are based on the numbers in Table 3 and will vary depending on the particular case study. Further, productivity is
unlike speedup; a 12× reduction in cost (C) would be truly outstanding (e.g. man-year effort reduced to man-month).

Finally, all the analyses thus far considered only the improvement in the cost part of the productivity equation. We have
held the utility part of the equation constant. It should be clear that the productivity benefits would be even more pronounced
when utility improvement from using FPGA-based RC is included, as will be shown in the next analysis.

Figure 36. Productivity impact of proposed innovations

5.6 Projected Impact based upon Utility, Holding Cost Constant

This analysis evaluates the productivity impact resulting from the utility of FPGA-based RC as compared to fixed
computing devices. With systems featuring fixed-architecture, multi-core and many-core devices, many of the development
problems faced by RC are now also faced for GPC, although more severe in RC due to benefits of variable architecture as
opposed to fixed with FMC devices. Thus, this analysis assumes comparable development costs, and evaluates the impact
based on the utility of RC. Of course, we do not expect RC development cost to be equal to fixed-computing costs. But, in a
“SIRCA-enabled” world, we believe we can get close in the future, especially as development in the FMC world gets harder
as parallelism expands. Additional assumptions for this analysis are follows:

• FMC device baseline is modern microprocessors

• Conservative: 10× speedup, 10× power savings, 2× dev cost with RC vs. fixed-computing

• Optimistic: 50× speedup, 20× power savings, 1.2× dev cost with RC vs. fixed-computing

(Note: This range of utility gain is common in today’s literature [Shackleford-01, Masuno-07, Merchant-07, Williams-08b].)

Based on these assumptions, a two-dimension utility space (power savings P and speedup S) is shown in Figure
37, comparing the utility of the three cases. Recall from Section 4 that the utility for a
Design 1 is:

32

   2
1

2
1111 PSUUlengthU 

Shown in Figure 38 is the Productivity Gain as compared to the baseline fixed-computing system with FMC microprocessors.

Figure 37. Utility comparison

Figure 38. Productivity gain comparison

In summary, it has been shown in this analysis that the productivity benefit is even more pronounced when utility
improvement from using FPGA-based RC is included. Furthermore, FDTE innovations will make RC tools amenable to
domain scientists. System-level, hierarchical tools will abstract the underlying hardware details. Automation will facilitate
targeting FMC and RMC devices with significantly less effort, making performance, power, versatility, and cost advantages
of FPGAs available to a larger user base.

33

6 SIRCA: A Proposed New Research Program

Shown in Figure 39 is the summary roadmap for the proposed SIRCA program. To recap, the program goals for SIRCA
are:

a) Develop innovative end‐to‐end concepts, methods, and integrated toolsets to dramatically improve the
development productivity of FPGA‐based RC applications.

b) Revolutionize implementation of critical DoD applications by broadening the use of FPGA‐based RC among domain
scientists and system designers for both high‐performance computing (HPC) and/or embedded (HPEC) scenarios.

Also summarized are the motivations for a program and the technical areas of particular interests. These are the 12
research thrusts identified and discussed in Section 3 of this report. It should be noted that the concept diagram for the FDTE
model on the bottom left of the figure emphasizes one of the key conclusions from this study. That is, more time and effort
spent in the Formulation phase will result in significant reduction of cost in the other three phases and thus reduction in the
overall development cost. Formulation innovations have the highest potential impact on productivity. Also, Formulation
innovations have the potential to dramatically increase the user base for FPGAs, thus cascading a multiplicative effect on
development productivity.

Figure 39. SIRCA program roadmap

34

7 Integrated Research Vision

During the past year, two independent studies have been performed, each charged with defining a vision and roadmap
for addressing fundamental challenges in application development tools for FPGA-based systems. The outcomes from these
two studies are described in two reports entitled Strategic Infrastructure for Reconfigurable Computing Applications
(SIRCA) and FPGA Design Productivity (FDP). The purpose of this section is to describe an integrated research vision that
includes the major concepts and research approaches from these two studies in a unified and integrated manner.

The two study teams met together on June 5th, 2008 in Salt Lake City along with experts in the field to present the
results of their findings and begin the task of integrating the research vision presented by both teams. Breakout groups at the
meeting provided feedback and suggestions on how to integrate the results from these research studies. We believe that this
unified vision can form the basis of a potential new program that will lead to revolutionary improvements in design
productivity for reconfigurable computing systems.

The two teams worked independently to query the reconfigurable computing community, gain a solid understanding of
contemporary practices, and research past and current endeavors related to FPGA design productivity. Surprisingly, the two
teams presented findings that shared several common themes. Both teams discussed similar causes to the problem and
presented similar approaches for addressing the challenges in application development for FPGA-based systems. However,
each team approached its study in a unique manner and emphasized different aspects of the design methodology. While the
emphasis of each study was different, the results of both studies complement each other well and when taken together present
a clear and complete research plan for significantly improving FPGA design productivity.

The SIRCA team organized its study around the concepts of Formulation, Design, Translation, and Execution (FDTE).
This research model is defined horizontally in terms of the four fundamental stages in application development. The SIRCA
study emphasizes research challenges in all four of these development stages but especially the Formulation stage, which
features strategic design exploration and tradeoff analyses for complex systems and is pivotal for design productivity in many
fields of engineering, and yet routinely overlooked in conventional hardware and software engineering.

The FDP team organized its study around three research focus areas: Abstraction, Reuse, and Turns per day (ART).
This research model is defined vertically, where each research focus area defines a key research thrust that must be addressed
in all stages of application development. The FDP study emphasizes the need to increase abstraction (reduce design detail),
apply reuse, and reduce turns per day at all stages of the design process to obtain significant improvements in design
productivity.

Figure 40 visually demonstrates the relationship between the models presented by the two study teams. In the center,
application development is defined in terms of the four stages in the FDTE model. The process begins with Formulation,
featuring strategic exploration of candidate algorithms and architectures supported by performance prediction for tradeoff
analyses. After strategic decisions are made, the process moves to code design and implementation in the Design stage, then
Translation to produce an executable form, and finally Execution, where verification and optimization occur and the
application executes supported by a variety of run-time services. The arrows between stages emphasize the iterative nature of
the development process and importance of exploiting results (templates, libraries, patterns, run-time information, etc.)
between stages.

Each of the three research themes of the ART model are shown as vertical bars that span all development stages of the
FDTE model. Reuse, for example, can be applied during Formulation, Design, Translation, and Execution to significantly
reduce the amount of new work that must be performed by a programmer or by automated design tools. The other two focus
areas, abstraction and turns per day, also span the four design stages of the FDTE model – technical approaches for each of
these focus areas are possible at each design stage to improve programmer productivity.

35

Figure 40. Integrated Research Vision

Each of the teams identified a set of specific research thrusts that will lead to major improvements in design
productivity, 21 thrusts all tolled. As highlighted in Table 7, each of these research thrusts can be placed within the
integrated research vision of Figure 40. The two study teams believe that improvements in design productivity of 20× or
better are possible if advancements are made with each of the development stages of the FDTE model and focused in terms of
abstraction, reuse, and turns per day.

36

8 Summary and Conclusions

The proposed SIRCA program is of vital importance for supporting future industrial, scientific and/or defense missions
from satellites to supercomputers, and featuring advantages in speed, low-power, versatility, size, etc. However, the chief
roadblock for these technologies is productivity in application development for RC systems.

A government led effort can drive innovation on this path in a coherent way. By contrast, the prevailing industry in this
field is fragmented, populated by disparate types of companies (e.g. from large device vendors to small tools vendors), and
focused primarily on incremental, evolutionary steps instead of revolutionary breakthroughs.

The proposed SIRCA program will set the foundation to meet these critical needs. Impact projections have shown the
potential for a dramatic decrease in application development cost, up to 12× by conservative estimates and 16× by optimistic
ones. This achievement would for example imply a reduction in development effort from one man-year to one man-month or
less, which is a dramatic increase in productivity. When factoring in utility as well, where productivity is the ratio of utility
versus development cost, the results are even more dramatic. Estimates suggest a gain in overall productivity of 30× and
more can be achieved versus conventional HPC and HPEC systems that are based upon fixed-architecture multicore
technologies. The ultimate outcome from these achievements when rendered is that SIRCA will invigorate widespread
exploitation of RC acceleration for a wide spectrum of applications.

Table 7. Research Thrusts and Models

Thrusts Abstraction Reuse Turns/day Formulation Design Translation Execution

SIRCA Research Thrusts
1. Strategic exploration X X X X
2. High-level prediction X X X
3. Numerical analysis X X X
4. Bridging design automation X X X X
5. System-level parallel languages X X X X
6. HW/SW codesign methods X X X X
7. Reusable & portable design X X X X
8. Translation algorithms X X
9. Translation target architectures X X
10. Run-time debug & verification X X X X
11. Performance analysis X X X X
12. Run-time services X X X

FDP Research Thrusts
1. Architecture shaping X X X
2. Dual-layer compilation X X X
3. Libraries & standards X X X
4. Interface synthesis X X X X
5. Parallel environments X X X X
6. Multi-FPGA synthesis X X X X
7. Platform services X X
8. Firmware X X X
9. High-level debug X X X

ART Model FDTE Model

37

9 References
[AADL] Architecture Analysis & Design Language (AADL), http://www.aadl.info/.
[Agarwal-07] A. Agarwal, “The Tile processor: A 64-core multicore for embedded processing,” Proc. High-Performance Embedded

Computing Workshop (HPEC), MIT Lincoln Lab, Lexington, MA, Sep. 18-20, 2007.
[Altera-99] “SignalTap User’s Guide,” Altera Corporation, San Jose, CA, 1999.10 (rev. 2) ed., Nov. 1999.
[Antola-07] A. Antola, "A Novel Hardware/Software Codesign Methodology Based on Dynamic Reconfiguration with Impulse C and

Codeveloper," Proc. Third Southern Conference on Programmable Logic (SPL '07), pp. 221-224, 2007.
[Ashby-07] J. V. Ashby, “New Languages for High Performance, High Productivity Computing,” RAL Technical Reports, RAL-TR-

2007-012, 2007.
[Balarin-97] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A, Jurecska, L. Lavagno, C. Passerone, A. Sangiovanni-Vincentelli, E.

Sentovich, K. Suzuki, B. Tabbara, “Hardware-Software Co-Design of Embedded Systems: The Polis Approach,” Kluwer
Academic Press, Jun. 1997.

[Balarin-03] F. Balarin, "Metropolis: an integrated electronic system design environment," Computer, Vol. 36, pp. 45-52, 2003.
[Bellows] P. Bellows and B. Hutchings, “JHDL - An HDL for Reconfigurable Systems,” http://www.jhdl.org/papers.html.
[Betz-97] V. Betz and J. Rose, “VPR: a new packing, placement and routing tool for FPGA research”, Proc. Seventh International

Workshop on Field-Programmable Logic and Applications (FPL97), pp 213-222, London, UK, Sept 1-3, 1997.
[Buttari-07] A. Buttari, J. Dongarra, J. Langou, J. Langou, P. Luszczek, and J. Kurzak, “Mixed Precision Iterative Refinement

Techniques for the Solution of Dense Linear Systems, International Journal of High Performance Computer
Applications, Vol. 21, No. 4, pp. 457-466, Aug. 2007.

[Buyukkurt-06] B. Buyukkurt, Z. Guo, and W. Najjar, “Impact of Loop Unrolling on Throughput, Area and Clock Frequency in ROCCC:
C to VHDL Compiler for FPGAs,” Proc. International Workshop On Applied Reconfigurable Computing (ARC), Delft,
The Netherlands, Mar. 1-3, 2006.

[Camera-05] K. Camera, H. K. So and R. W. Brodersen, "An integrated debugging environment for reprogrammble hardware
systems," Proc. of the Sixth International Symposium on Automated Analysis-Driven Debugging (AADEBUG),
Monterey, California, pp. 111-116, 2005.

[Compton-02] K. Compton and S. Hauck, “Reconfigurable computing: A survey of systems and software,” ACM Computing Surveys
(CSUR), Vol. 34, No. 2, pp. 171-210, Jun. 2002.

[Curreri-08] J. Curreri, S. Koehler, B. Holland, and A. George, "Performance Analysis with High-Level Languages for High-
Performance Reconfigurable Computing," Proc. of 16th IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM), Palo Alto, CA, Apr. 14-15, 2008.

[Dehon-04] A. DeHon, J. Adams, M. DeLorimier, N. Kapre, Y. Matsuda, H. Naeimi, M. Vanier, and M. Wrighton, "Design patterns
for reconfigurable computing," Proc. Twelfth Annual IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM), pp. 13-23, Napa Valley, CA, Apr. 20-23, 2004.

[Densmore-06] D. Densmore, A. Sangiovanni-Vincentelli, and R. Passerone, "A Platform-Based Taxonomy for ESL Design", IEEE
Design & Test of Computers, Volume 23, Issue 5, pp. 359-374, May 2006.

[DSPB] Altera DSP Builder, http://www.altera.com/products/software/products/dsp/dsp-builder.html
[Edwards-97] S. Edwards, L. Lavagno, E.A. Lee, and A. Sangiovanni-Vincentelli, "Design of Embedded Systems: Formal Models,

Validation, and Synthesis", Proc. IEEE, Volume 85, Issue 3, March 1997.
[El-Araby-07a] E. El-Araby, P. Nosum, and T. El-Ghazawi, “Productivity of High-Level Languages on Reconfigurable Computers: An

HPC Perspective”, Proc. IEEE International Conference on Field-Programmable Technology (FPT 2007), Japan,
December, 2007.

[El-Araby-07b] E. El-Araby, M. Taher, M. Abouellail, T. El-Ghazawi, and G. B. Newby, “Comparative Analysis of High Level
Programming for Reconfigurable Computers: Methodology and Empirical Study”, Proc. Third Southern Conference on
Programmable Logic (SPL2007), Mar del Plata, Argentina, February, 2007.

[Fobel-07] C. Fobel, G. Grewal, A. Morton, "Using Hardware Acceleration to Reduce FPGA Placement Times," Proc. Canadian
Conference on Electrical and Computer Engineering (CCECE), pp. 647-650, Vancouver, Canada, Apr. 22-26, 2007.

[Fornaciari -02] W. Fornaciari, D. Sciuto, C. Silvano, V. Zaccaria, ‘A sensitivity-based design space exploration methodology for
embedded systems,” Design Automation for Embedded Systems, Kluwer Academic Publishers 7 (1-2), pp. 7-33, 2002.

[Gamma-94] E. Gamma, R. Johnson, H. Helm, J. M. Vlissides, and G. Booch, “Design Patterns: Elements of Reusable Object-Oriented
Software”, Addison-Wesley Professional, 1994.

[Gedae] Gedae, www.gedae.com
[Gries-03] M. Gries, "Methods for Evaluating and Covering the Design Space during Early Design Development", Technical report,

Electronics Research Lab, University of California at Berkeley, UCB/ERL M03/32pp. 189-194, August 2003.
[George-08] A. George, "Reformation and Formulation: Key Challenges for Reconfigurable Supercomputing," Proc. of Many-core

and Reconfigurable Supercomputing Conference (MRSC), Belfast, Ireland, Apr. 1-3, 2008 (keynote presentation).
[Graham-01] P. Graham, B. Nelson, and B. Hutchings, “Instrumenting Bitstreams for Debugging FPGA Circuits,” Proc. of Ninth IEEE

Symposium on Field-Programmable Custom Computing Machines (FCCM’01), pp. 41-50, Apr. 29 - May 2, 2001.
[Grobelny-07] E. Grobelny , C. Reardon, A. Jacobs, and A. George, "Simulation Framework for Performance Prediction in the

Engineering of RC Systems and Applications," Proc. International Conference on Engineering of Reconfigurable Systems
and Algorithms (ERSA), Las Vegas, NV, Jun. 25-28, 2007.

38

[Gruian-06] F. Gruian, "The SystemJ approach to system-level design," Proc. Fourth ACM and IEEE International Conference on
Formal Methods and Models for Co-Design (MEMOCODE '06), pp. 149-158, Jul 2006.

[Haldar-00] M. Haldar, A. Nayak, A. Choudhary, P. Banerjee "Parallel algorithms for FPGA placement," Proc. Tenth Great Lakes
symposium on VLSI, pp. 86-94, Chicago, IL, Mar. 2-4, 2000.

 [Holland-07] B. Holland, K. Nagarajan, C. Conger, A. Jacobs, and A. George, "RAT: A Methodology for Predicting Performance in
Application Design Migration to FPGAs," Proc. High-Performance Reconfigurable Computing Technologies and
Applications Workshop (HPRCTA) at SC'07, Reno, NV, Nov. 11, 2007.

[Huang-07] Miaoqing Huang, Ivan Gonzalez, and Tarek El-Ghazawi, "A Portable Memory Access Framework for High-Performance
Reconfigurable Computers", Proc. IEEE International Conference on Field-Programmable Technology (ICFPT'07),
Kokurakita, Kitakyushu, Japan, Dec. 12-14, 2007

[Huang-08] M. Huang, I. Gonzalez, S. Lopez-Buedo, and T. El-Ghazawi, "A Framework to Improve IP Portability on Reconfigurable
Computers," to appear Proc. 2008 International Conference on Engineering of Reconfigurable Systems and Algorithms
(ERSA), Las Vegas, NV, July 14-17, 2008.

[ImpulseC] Impulse Accelerated Technologies, “Accelerating HPC and HPEC Applications Using Impulse C”, Reconfigurable
Systems Summer Institute (RSSI), Urbana, IL, July 17-20, 2007

[Kannan-06] P. Kannan, D. Bhatia, "Interconnect estimation for FPGAs," Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on , vol.25, no.8, pp. 1523-1534, Aug. 2006.

[Kendall-05] R. Kendall et al., “Case Study of the Hawk Code Project,” LLANL technical report # LA-UR-05-9011, 2005.
[Kepner-04a] J. Kepner, “HPC Productivity: An Overarching View,” Int. Journal of High Performance Computing Applications, Vol

18, No. 4, pp. 393-397, 2004.
[Kepner-04b] J. Kepner, “High Performance Computing Productivity Model Synthesis,” Int. Journal of High Performance Computing

Applications, Vol 18, No. 4, pp. 505-516, 2004.
 [Koehler-07] S. Koehler, J. Curreri, and A. George, "Challenges for Performance Analysis in High-Performance Reconfigurable

Computing," Proc. Reconfigurable Systems Summer Institute (RSSI), Urbana, IL, Jul. 17-20, 2007.
[LabView] LabView, http://www.ni.com/labview/
[Lee-06] D. Lee, A. Abdul Gaffar, R.C.C. Cheung, O. Mencer, W. Luk, and G.A. Constantinides, "Accuracy Guaranteed Bit-Width

Optimization", IEEE Transactions on Computer-Aided Design, Vol. 25(10), 1990-2000, Oct. 2006.
[Li-95] J. Li, C. Cheng, "Routability improvement using dynamic interconnect architecture", Proc. IEEE Symposium on FPGAs

for Custom Computing Machines, pp. 61-67, 19-21 April 1995.
[Li-06] X. Li, H. Yang, and H. Zhong; "Use of VPR in Design of FPGA Architecture", Proc. Eight International Conference on

Solid-State and Integrated Circuit Technology, ICSICT '06), pp.1880 – 1882, 2006.
[Lubbers-07] E. Lubbers and M. Platzner, “RECONOS: An RTOS Supporting Hard- and Software Threads,” Proc. Field

Programmable Logic and Applications (FPL), Amsterdam, the Netherlands, Aug. 27-29, 2007.
[LViewFPGA] LabVIEW FPGA, http://www.ni.com/fpga/
[Lysecky-04] R. Lysecky, F. Vahid, and S. Tan, “Dynamic FPGA Routing for Just-in-Time Compilation,” IEEE/ACM Design

Automation Conference (DAC), June 2004.
[Lysecky-06] R. Lysecky, G. Stitt, and F. Vahid, "Warp Processors," ACM Trans. Design Automation Electronic Systems (TODAES),

Vol. 11, pp. 659-681, Jul. 2006.
[Masuno-07] S. Masuno, T. Maruyama, Y. Yamaguchi, and A. Konagaya, “Multiple Sequence Alignment Based on Dynamic

Programming Using FPGA,” Proc. IEICE Trans. Information and Systems, Vol. E90-D, No. 12, Dec 2007.
[Merchant-07] S. Merchant, "Intrinsically Evolvable Artificial Neural Networks," Ph.D. dissertation, ECE Dept. University of

Tennessee, Aug 2007.
[Mulpuri-01] C. Mulpuri and S. Hauck, "Runtime and quality tradeoffs in FPGA placement and routing," Proc. ACM/SIGDA Ninth

International Symposium on Field Programmable Gate Arrays, pp. 29-36, Monterey, CA, 2001.
[Nagarajan-08] K. Nagarajan, B. Holland, A. George, C. Slatton, H. Lam, “Accelerating Principal Machine-Learning Algorithms on

FPGAs with a Pattern-based Design Methodology,” submitted and pending review Journal of Signal Processing Systems,
2008.

[OpenFPGA] OpenFPGA, http://openfpga.org.
 [Planti-99] J. Plantin, "Aspects on system-level design," Hardware/Software Codesign (CODES '99), Proc. Seventh International

Workshop on, pp. 209-210, 1999.
[Pellerin-05] D. Pellerin and S. Thibault, “Practical FPGA Programming in C,” Prentice Hall PTR, 2005.
[Penttinen-06] A. Penttinen, R. Jastrzebski, R. Pollanen, O. Pyrhonen, “Run-time Debugging and Monitoring of FPGA Circuits Using

Embedded Microprocessors,” Proc. IEEE Design and Diagnostics of electronic Circuits and Systems, Prague, Czech
Republic, Apr. 18-21, 2006.

[Poznanovic-05] D. S. Poznanovic, “Application Development on the SRC Computers, Inc. Systems,” Proc. Nineteenth IEEE
International Parallel and Distributed Processing Symposium (IPDPS), Denver, CO, pp. 78a, Apr 2007.

[Saha-07a] P. Saha and T. El-Ghazawi, “Applications of Heterogeneous Computing in Hardware/Software Co-Scheduling,” Proc.
ACS/IEEE International Conference on Computer Systems and Applications, May 13-16, 2007.

[Saha-07b] P. Saha and T. El-Ghazawi, “A Methodology for Automating Co-Scheduling for Reconfigurable Computing Systems,”
Proc. Fifth ACM/IEEE International Conference on Formal Methods and Models for Codesign, May 30-Jun 1 2007.

[Sangiovanni-Vincentelli-07] A. Sangiovanni-Vincentelli, "Quo Vadis, SLD? Reasoning About the Trends and Challenges of System-
Level Design," Proc. IEEE, Vol. 95, pp. 467-506, Mar. 2007.

39

[Scrofano-07] R. Scrofano and V. Prasanna, “A Hierarchical Performance Model for Reconfigurable Computers,” in “Handbook of
Parallel Computing: Models, Algorithms and Applications,” edited by S. Rajasekaran and J. Reif, CRC Press, 2007.

[Shackleford-01] B. Shackleford, G. Snider, R. Carter, E. Okushi, M. Yasuda, K. Seo, and H. Yasuura “A High-Performance, Pipelined,
FPGA-Based Genetic Algorithm Machine,” Genetic Programming and Evolvable Machines, Vol. 2, pp. 33-60, 2001

[Simulink] Simulink - Simulation and model-based design, http://www.mathworks.com/products/simulink/
[Smith-03] M.C. Smith, "Analytical modeling of high performance reconfigurable computers: prediction and analysis of system

performance," Ph.D. Dissertation, ECE Dept. University of Tennessee, pp. 208, Dec. 2003.
[Stitt-07] G. Stitt and F. Vahid, "Thread warping: a framework for dynamic synthesis of thread accelerators," Proc. International

Conf. on Hardware/Software Co-design and System Synthesis (CODES/ISSS), pp. 93-98, Salzburg, Austria, Sept. 30-Oct.
5, 2007.

[Sysgen] Xilinx System Generator, http://www.xilinx.com/ise/optional_prod/system_generator.htm
[SystemC] “Open SystemC initiative,” www.systemc.org.
[T-APPLIB] T-APPLIB: Technical working group on application specific FPGA libraries, OpenFPGA, http://openfpga.org/.
[T-CORELIB] T-CORELIB: Technical working group on core libraries and interoperability, OpenFPGA, http://openfpga.org/.
[T-GENAPI] T-GENAPI: Technical working group on general FPGA functionality APIs, OpenFPGA, http://openfpga.org/.
[Tomko-00] K. Tomko and A. Tiwari, "Hardware/software Co-debugging for Reconfigurable Computing," Proc. of IEEE

International High-Level Design Validation and Test Workshop, pp.59-63, Berkeley, CA, Nov. 8-10, 2000.
[Tong-07] J. G. Tong, "A Comparison of Profiling Tools for FPGA-Based Embedded Systems", Electrical and Computer

Engineering, CCECE 2007, Canadian Conference on, pp. 1687-1690, 2007.
[Troxel-06] I. Troxel, E. Grobelny, G. Cieslewski, J. Curreri, M. Fischer, and A. George, "Reliable Management Services for COTS-

based Space Systems and Applications," Proc. International Conference on Embedded Systems and Applications (ESA),
Las Vegas, NV, Jun. 26-29, 2006.

[UML] Object Management Group: Unified Modeling Language (UML), http://www.uml.org/.
[Wang-96] P. Wang, and K. Chen, "A simultaneous placement and global routing algorithm for an FGPA with hierarchical

interconnection structure", Proc. IEEE International Symposium on Circuits and Systems (ISCAS'96), Vol.4, pp. 659-662,
May 1996.

[Williams-08a] J. Williams, A. George, J. Richardson, K. Gosrani, and S. Suresh, "Computational Density of Fixed and Reconfigurable
Multi-Core Devices for Application Acceleration," accepted and to appear in Proc. Reconfigurable Systems Summer
Institute 2008 (RSSI), Urbana, IL, July 7-10, 2008.

[Williams-08b] J. Williams, A. George, J. Richardson, K. Gosrani, and S. Suresh, "Fixed and reconfigurable multi-core device
characterization for HPEC," submitted and review pending in Proc. High-Performance Embedded Computing Workshop
(HPEC), MIT Lincoln Lab, Lexington, MA, Sep. 23-25, 2008.

[Wrighton-03] M. Wrighton and A. DeHon, "Hardware-assisted simulated annealing with application for fast FPGA placement,“ Proc.
International Symposium on Field-Programmable Gate Arrays (FPGA) pp.33-42, Feb. 23-25, 2003.

[Writhlin-07] M. Wirthlin, D. Poznanovic, P. Sundararajan, A. Coppola, D. Pellerin, W. Najjar, R. Bruce, M. Babst, O. Pritchard, P.
Palazzari1, and G. Kuzmanov, “OpenFPGA CoreLib Core Library Interoperability Effort,” Proc. Reconfigurable Systems
Summer Institute (RSSI), Urbana, IL, Jul. 17-20, 2007.

[Xilinx-00] “ChipScope Software and ILA Cores User Manual,’ Xilinx, San Jose, CA, v. 1.1 ed., Jun. 2000.

